
How To Sort a Data Structure on
One or more Subfields (in memory)

Tech tip courtesy of Barsa Consulting, LLC and Dave Schnee

One of the things we used to wish for was a way to sort several arrays according to the data in one or more of them.
When there were only 2 arrays and one of them was to be the sort "key", then it was relatively easy to use the SORTA
verb in RPG; any other combination required some creativity. More generally, we now have multi-occurrence data
structures and data structures based on a pointer either of which may have a variable number of populated entries at any
moment in time. Well, using the 'qsort' library function from the C library, an RPGLE program can sort a memory
structure according to any desired arbitrary combination of "key" fields. An example is shown below of a complete
program that uses qsort and provides the required compare routine itself. Of course, the compare routine could be
provided as a separate module and qsort can be used by yet another module of an ILE program.

h
 * Compile with DFTACTGRP(*no) BNDDIR(qc2le)

 * Prototype of the C Library 'qsort' function
d qsort pr extproc('qsort')
d ArrayToSort * value
d #Elements 10u 0 value
d ElementSize 10u 0 value
d CompareRoutine...
d * procptr value

d MyArray ds
d a 5a inz('ABCDE')
d b 5a inz('XYZEF')
d c 5a inz('ABAAA')
d d 5a inz('GBCDE')

 * Note: "MyArray" could be a DS based on a pointer
 * and, at run time, ALLOC space to that pointer
 * equal to the number of occurrences desired times
 * the size of one element. If more entries are needed
 * later, REALLOC the pointer to the new size.

d #Elements s 10u 0 inz(4)
d ElementSize s 10u 0 inz(5)

d CompareRoutine...
d s * procptr
d inz(%paddr('COMPRTN'))

 * Prototype of the "compare" routine (below)
d CompRtn pr 10i 0
d Element1 * value
d Element2 * value

 * Sort the multi-occurrence data structure.
c callp qsort(%addr(MyArray) :
c #Elements :
c ElementSize :
c CompareRoutine)

 * Display the resulting structure.
c a dsply
c b dsply
c c dsply
c d dsply

http://www.barsaconsulting.com/
mailto:dave@schnee.com

c eval *inlr = *on
c return

 *
 *
 * Compare routine. Returns a -1, 0 or +1 based upon
 * the relative values of bytes 2-4 of the two
 * 5-byte elements passed in.
 *
 * Result Meaning
 * 0 Values are to be considered EQUAL
 * -1 First values is *LT the second value
 * +1 First values is *GT the second value
 *
 * (Reverse the +1/-1 to sort DESCENDING on this subfield)
 *
 *

p CompRtn b export

d CompRtn pr 10i 0
d Element1 * value
d Element2 * value

d CompRtn pi 10i 0
d Element1 * value
d Element2 * value

d Value1 ds based(Element1)
d Filler1a 1a
d SortOn1 3a
d Filler1b 1a

d Value2 ds based(Element2)
d Filler2a 1a
d SortOn2 3a
d Filler2b 1a

d Result s 10i 0

 * Assume they are equal (result = *zero)
c eval Result = *zero

c if SortOn1 > SortOn2
c eval Result = 1
c endif

c if SortOn1 < SortOn2
c eval Result = -1
c endif

c return Result

p CompRtn e

